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Abstract: We construct exact vortex solutions in 3 + 1 dimensions to a theory which is

an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe

some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the

efforts in the last decades those are the first exact analytical solutions to be constructed

for such type of theory. The exact vortices appear in a very particular sector of the theory

characterized by special values of the coupling constants, and by a constraint that leads

to an infinite number of conserved charges. The theory is scale invariant in that sector,

and the solutions satisfy Bogomolny type equations. The energy of the static vortex is

proportional to its topological charge, and waves can travel with the speed of light along

them, adding to the energy a term proportional to a U(1) Noether charge they create.

We believe such vortices may play a role in the strong coupling regime of the pure SU(2)

Yang-Mills theory.
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The Skyrme-Faddeev (SF) model [1] has been proposed long ago as a four dimensional

field theory that can present finite energy knot solitons carrying a topological charge given

by the Hopf map S3 → S2. Despite many efforts in the last decades no analytical non-

trivial solutions have been constructed. The confirmation of that expectation however came

some years ago with the construction of numerical solutions employing powerful computer

resources [2–4]. The interest in the SF model has increased since then and many applica-

tions have been proposed including Bose-Einstein condensates [5] and superconductors [6].

In addition, it has been conjectured [7] that the SF model describes the low energy limit

of the pure (no matter) SU(2) Yang-Mills theory, with the knot solitons being interpreted

perhaps as glueballs, or some non-trivial vacuum configurations. The conjecture is based

on the Cho-Faddeev-Niemi decomposition [7, 8] of the SU(2) Yang-Mills field in terms of

an abelian gauge field, a triplet ~n of scalars living on S2 (~n2 = 1), and two other degrees of

freedom which can be expressed by two real scalar fields. There has been several controver-

sies about the validity of that conjecture [9, 10] but a calculation carried out by Gies [11]

has indicated that it may indeed be the case provided additional quartic terms are added

to the effective Lagrangian.

The purpose of this paper is to present the first exact analytical solutions in 3 + 1

dimensions for the extension of the Skyrme-Faddeev model defined by the Lagrangian

L = M2 ∂µ~n · ∂µ~n −
1

e2
(∂µ~n ∧ ∂ν~n)2 +

β

2
(∂µ~n · ∂µ~n)2 (1)

where ~n is a triplet of real scalar fields taking values on the sphere S2, M is a coupling

constant with dimension of mass, e2 and β are dimensionless coupling constants. We show

that (1) possesses a Bogomolny type sector admitting an infinite number of conserved

currents, and when the coupling constants satisfy β e2 = 1, there exists an infinite class

of exact solutions. Among those there are static vortex solutions as well as vortices with

waves travelling along them, and enhancing their stability.

The first two terms of (1) correspond to the original SF model [1, 4], and the third one

agrees with the term found by Gies in his calculations [11]. A similar extension of the SF

model has been considered in [12], but with some important differences. First the model

was defined in three space dimensions only and the signs of the second and third terms in

(1) were chosen to keep the static Hamiltonian positive definite. The existence of the exact

solutions we present in this paper depends crucially on the fact that e2 and β have the

same sign, and that agrees with the signature of the one-loop Wilsonian effective action

for the SU(2) Yang-Mills theory obtained in [11]. Despite of that signature, our solutions

belong to a sector of the theory where the energy is positive definite. Solutions for the

conformally invariant version of the model, namely the theory (1) without the first term

(M = 0), have been constructed and will be given in a separate paper [13].

The solutions we construct in this paper can be best explained by using the stereo-

graphic projection of S2 in terms of a complex scalar field u, i.e.

~n =
(

u + u∗,−i (u − u∗) , | u |2 −1
)

/
(

1+ | u |2
)

(2)

– 2 –
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One then obtains that

~n · (∂µ~n ∧ ∂ν~n) = 2i
(∂νu∂µu∗ − ∂µu∂νu

∗)

(1+ | u |2)2

(∂µ~n · ∂µ~n) = 4
∂µu ∂µu∗

(1+ | u |2)2
(3)

Therefore, the Lagrangian (1) becomes

L = 4M2 ∂µu ∂µu∗

(1+ | u |2)2
+

8

e2

[

(∂µu)2 (∂νu
∗)2

(1+ | u |2)4
+

(

β e2 − 1
) (∂µu ∂µu∗)2

(1+ | u |2)4

]

(4)

and the Euler-Lagrange equations following from (4), or (1), reads

(

1+ | u |2
)

∂µKµ − 2u∗ Kµ ∂µu = 0 (5)

together with its complex conjugate, and where1

Kµ ≡ M2 ∂µu −
4

e2

[(

1 − β e2
)

(∂νu∂νu∗) ∂µu − (∂νu∂νu) ∂µu∗
]

(1+ | u |2)2
(6)

It was shown in [16], using a generalization of the zero curvature condition to higher

dimensions, that many field theories admit an infinite number of conserved charges when

some special constraints are imposed. In theories with target space S2 like (1) the relevant

constraint is given by

∂µu∂µu = 0 (7)

When (7) is imposed the theory (1) possesses the infinite set of conserved currents given by

Jµ ≡
δG

δu
Kc

µ −
δG

δu∗
Kc

µ
∗ (8)

where G is any function of u and u∗, but not of their derivatives, and Kc
µ is obtained from

(6) by imposing (7), i.e.

Kc
µ ≡ M2 ∂µu −

4

e2

(

1 − β e2
)

(∂νu∂νu∗) ∂µu

(1+ | u |2)2
(9)

The conservation of (8) follows from the equations of motion, which now read ∂µKc
µ = 0,

and the two identities Kc
µ∂µu = 0 and Im

(

Kc
µ∂µu∗

)

= 0. In the context of SF model those

currents were first constructed in [17].

Notice that the constraint (7), in Minkowiski space-time, can be cast into the form

[(∂1 + i ∂2) u] [(∂1 − i ∂2) u] = − [(∂3 + ∂0) u] [(∂3 − ∂0) u] (10)

1Notice that this theory has a set of trivial plane wave solutions given by u = Ae
i kµ xµ

, with the wave

vector satisfying either k
2 = 0 or k

2 = −
(1+A2)2

4 A2

M2

β
. Plane wave solutions for the SF model were considered

in [14].

– 3 –
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If one now chooses the coupling constants in (1) to satisfy

β e2 = 1 (11)

one gets that eqs. of motion (5) reduce to ∂2u = 0, or

(∂1 + i ∂2) (∂1 − i ∂2) u = − (∂3 + ∂0) (∂3 − ∂0) u (12)

In a Euclidean space-time the same relations hold by replacing the time coordinate x0 by

an imaginary time −i x4, and so ∂0 → i ∂4.

Of course the equations (10) and (12) are solved by field configurations satisfying

(∂1 + i ε1 ∂2) u = 0 and (∂3 + ε2 ∂0)u = 0 (13)

where εi = ±1, are signs chosen independently. In addition, equations (13) are satisfied by

configurations of the form2

u = v (z) w (y) (14)

where z = x1 + i ε1 x2 and y = x3 − ε2 x0, with v (z) and w (y) being arbitrary regular

functions of their arguments. Notice that if u satisfies (13), so does any regular functional

of it, F (u). Indeed, by taking F to be the logarithm one observes that the ansatz (14) is

mapped into u = v (z) + w (y). See [19] for similar discussions in 2 + 1 dimensions.

Notice that by imposing the constraint (7) and the condition (11) the Lagrangian (4)

and equations of motion (5) becomes those of the CP 1 model, i.e.

LCP 1 = 4M2 ∂µu ∂µu∗

(1+ | u |2)2
(

1+ | u |2
)

∂2u − 2u∗ (∂µu)2 = 0 (15)

Therefore, the solutions of (10) and (12) also solve the CP 1 model in 3 + 1 dimensions.

Therefore, the Skyrme-Faddeev-Gies model (1) shares a common submodel with CP 1, de-

fined by the equations (∂µu)2 = 0, and ∂2u = 0, together with the condition (11). In

fact, the first equation in (13) correspond to the Bogomolny equation, or equivalently

the Cauchy-Riemann equations, leading to static solutions of that model in 2 + 1 dimen-

sions [20]. The relation between the Bogomolny equation and the constraint (7) was already

pointed out in [16] when the generalization of the zero curvature condition was applied to

the CP 1 model in 2 + 1 dimensions.

The structure of the solutions is now clear. The function v (z) corresponds to the

static lumps of the CP 1 model in 2 + 1 dimensions. The function w (y) corresponds to

waves traveling along the x3 direction with the speed of light. In a Euclidean space-time

w (y) corresponds instead to a second copy of the CP 1 lumps. If one wants static solutions

in Minkowiski space-time, then it has also to be x3 independent. Therefore, the CP 1

lump gets a string like shape in three space dimensions and it corresponds in fact to a

static vortex solution for the Skyrme-Faddeev-Gies model (alternatively for the CP 1 too,

in three space dimensions). One can take v (z) to be any finite energy lump solution of

2We are grateful to Prof. D. Fairlie for pointing to us that a large class of implicit solutions for the wave

equation and the constraint (7) is given in [18], and that they are related to the solutions (14).

– 4 –
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the two dimensional CP 1 model. For instance, one can take v ∼ zn, and w (y) = 1 in

(14). Using polar coordinates on the x1 x2 plane, i.e. x1 + i ε1 x2 = ρ ei ε1 ϕ, we obtain the

static vortex

u =
(ρ

a

)n
ei ε1 n ϕ (16)

where n is an integer, and a an arbitrary parameter with dimension of length. Configura-

tions with several vortices all parallel to the x3-axis can be obtained from the multi lumps

of the CP 1 model. Numerical and approximate vortex solutions for the SF model have

been considered in [14].

One can dress such vortices with waves traveling along the x3 axis. There are several

ways of doing it. One way of keeping the energy per unit of length finite is to take w (y)

in (14) of the plane wave form, leading to the vortex

u =
(ρ

a

)n
ei[ε1 n ϕ+k (x3−ε2 x0)] (17)

where k is an arbitrary parameter with dimension of (length)−1. Vortices with waves have

been found in a different context in [15].

If one evaluates the Hamiltonian density for the theory (1) and then imposes the

conditions (10) and (11) one obtains

Hc = 4M2

(

∂0 u∂0 u∗ + ~∇u · ~∇u∗
)

(1+ | u |2)2
(18)

where the subindex c means we are imposing (10) and (11). Notice that it coincides with

the Hamiltonian density for the CP 1 model. We can write that as

Hc =
4M2

(1+ | u |2)2
[

| ∂1u + iε1∂2u |2 + | ∂3u + ε2∂0u |2

+iε1 (∂1u∂2u
∗ − ∂2u∂1u

∗) − ε2 (∂3u∂0u
∗ + ∂0u∂3u

∗)
]

≥ 4M2

[

i ε1

(∂1u∂2u
∗ − ∂2u∂1u

∗)

(1+ | u |2)2
− ε2

(∂3u∂0u
∗ + ∂0u∂3u

∗)

(1+ | u |2)2

]

(19)

The bound on the energy density is clearly saturated by the solutions of (13). In fact, for

those solutions one gets

Hc = 8M2
(

| ∂zu |2 + | ∂yu |2
)

/
(

1+ | u |2
)2

(20)

The same analysis can be done in the Euclidean case, with the same results, replacing the

Hamiltonian density by the Lagrangian density, and x0 → −i x4.

The energy density for the vortex solutions (16) and (17) is then given by3

Hvortex
c = 8M2

[

n2

ρ2
+ k2

]

(ρ/a)2 n

(

1 + (ρ/a)2 n
)2

(21)

3Notice that such energy density depends on | n |, and not on the sign of n, because (ρ/a)2 n

(1+(ρ/a)2 n)2
=

(ρ/a)−2 n

(1+(ρ/a)−2 n)2

– 5 –
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Therefore, by integrating on the x1x2 plane we get the energy per unity lenght. For the

static vortex (16) it is

Estat.vortex = 8π M2 | n | (22)

The integer n is the topological charge associated to the vortex, and defined as the winding

number of the map from any circle on the x1x2 plane, centered at the x3-axis, to the circle

u/ | u | on target space. So, the energy per unit length is proportional to the topological

charge, a characteristic of solutions saturating the Bogomolny bound.

The energy per unit length for the time-dependent vortex (17) diverges for n = ±1,

and for | n |> 1 it is given by

Evortex/wave = 8π M2
[

| n | +k2 a2 I (| n |)
]

(23)

where I (n) = 1
n Γ

(

n+1
n

)

Γ
(

n−1
n

)

, with Γ being the Euler’s Gamma function. Notice that

I (n) is a monotonically decreasing function of n and I (n) → 1/n, as n → ∞. Therefore,

the plane wave contribution to the energy per unit length decreases as | n | increases.

Notice that a necessary condition for the charge densities J0 associated to (8) to be

non-vanishing is that the field u should be time dependent. Therefore, all the charges

associated to (8) vanish when evaluated on the static vortex solutions (16). However,

the vortices (17), with waves travelling along them, are time dependent solutions and so

can have non-vanishing charges associated to (8). Consequently that infinite number of

conserved charges introduce selection rules which protect them against decay into lower

energy vortex solutions, and so give them some stability. However the question of stability

of such solutions under small perturbations is a much more complex issue, and deserves

further studies. We should point out however that the static Hamiltonian associated to

(1) is positive definite for M2 > 0, e2 < 0, β < 0 and β e2 ≥ 1. Therefore, our static

vortices, saturating the Bogomolny bound (see (19)), have the smallest possible energy

in such theory, for that range of coupling constants. That fact makes us believe that for

sufficiently large M2, the vortices should be stable under small perturbations.

If one chooses in (8), the functional as G = −i 4
(

1+ | u |2
)−1

, and if one takes into

account (11) one gets that the corresponding conserved current is

Jµ = −i 4M2 [u∂µu∗ − u∗ ∂µu]

(1+ | u |2)2
(24)

which corresponds to the Noether current for the theory (1) associated to the symmetry

u → eiα u, after the conditions (7) and (11) are imposed. Evaluating the charge per unit

length for the solution (17) one gets

Q =

∫

dx1dx2 J0 = ε2 8π M2 k a2 I (| n |) (25)

Therefore, the contribution to the energy per unit length (23) coming from the plane wave

is proportional to the U(1) Noether charge it gives to the solution.

The spectrum of energy we have got is therefore very similar to that of the so-called Q-

lumps constructed in [21] for the 2+1 dimensional CP 1 model with a potential. See [22] for

– 6 –
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more details, [23] for a related model, and also [24] for Q-balls solutions on S3. However, the

mechanisms involved here are quite different. We have a four dimensional theory, without

a potential term depending on | u | only, and our vortices are not spinning but instead have

waves traveling along them with the speed of light. In addition, we again point out that

our results are true for the four dimensional CP 1 model without a potential, but subjected

to the constraint (7).

The theory (1) is invariant under the internal SO(3) symmetry of rotations of the ~n

field. It then possesses three conserved Noether currents associated to such symmetry. One

of them is that associated to the symmetry u → eiα u, discussed above. However, when the

contraint (7) is imposed the reduced model gets an infinite number of conserved currents

given by (8). Such currents can not be of the Noether type4 because the reduced system

of equations, namely ∂2u = 0 and (∂µu)2 = 0, does not possess a Lagrangian and so the

Noether theorem does not apply. Such currents can be understood as hidden symmetries of

the reduced model by constructing them using a zero curvature representation as explained

in section 6.1.1 of [16]. They are associated to an infinite dimensional non semi-simple

Lie algebra made of the semi-direct product of SU(2) with abelian ideals transforming

under infinite dimensional representations of SU(2). It is important to understand the role

such symmetries may have in the extension of the Skyrme-Faddeev model given by the

theory (1).

Another point concerning the enlargement of symmetries is the following. Even though

the theory (1) is not scale invariant, the conditions (7) and (11) lead to a sub-model which

equations of motion are scale invariant. The condition (∂u)2 = 0 is conformally invariant

but ∂2u = 0 is only scale invariant in four dimensions.

Finally, we would like to comment on some important points of our construction which

relate to the pure SU(2) Yang-Mills theory. Notice that by using the Cho-Faddeev-Niemi

decomposition [7, 8] of the SU(2) gauge field ~Aµ, and assuming that at low energies all

degrees of freedom get frozen except for those associated to the ~n field, then ~Aµ = ∂µ~n∧~n.

Our vortices are solutions of the constraints ∂µu∂µu = 0, and also of ∂2u = 0. Those

equations imply that the field ~n satisfies ∂2~n + (∂~n)2 ~n = 0. Therefore the connection,

evaluated on the vortices, satisfies the gauge fixing condition

∂µ ~Aµ = 0 (26)

Another point is that, without the use of any condition (equations of motion or constraint),

and working in a Euclidean space-time, it follows that (see eq. (3))

~Aµ · ~Aµ = Hc/M
2 (27)

where Hc is given in (18). Therefore as explained in (19), the equations (13) then imply

that our vortex solutions minimize locally the quantity ~Aµ · ~Aµ. In fact, its integral on the

plane x1 x2 has the smallest possible value when evaluated on the vortices. Such quantity

is used as a gauge fixing condition and it is believed to signal non trivial structures in gauge

theories [26].

4Except for those three currents associated to the global SO(3) symmetry of (1), contained in (8).

– 7 –
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In order to have the condition (11) satisfied we need of course the coupling constants

β and e2 to have the same sign. That implies that the second and third terms in (1) have

opposite signs. We are then in a situation which differs from that considered in [12] where

the signs of the three terms in (1) were chosen to give positive contributions to the static

energy. See also [25] for a discussion on solutions of that type of model. We are however

in agreement with the situation in [11]. Indeed, consider the action (1) in four dimensional

Euclidean space and take β and e2 to be negative. We then have the same sign structure

of the effective action given in eq. (14) of [11]. In fact, the condition (11) corresponds to

the following relation among the parameters of [11]

ln
k

Λ
= −6π2 (4 − α)

α g2
(28)

where g2 is the gauge coupling constant, α a gauge fixing parameter, Λ and k are the UV

and IR cutoffs respectively. The values for α in [11] are such that (4 − α) /α is positive,

and so (28) is indeed consistent with k < Λ. However, the relation (28) has to be read in its

proper context, i.e. the physical limit corresponds to k → 0, and the perturbative results

of [11] may not be applicable in that regime. It would be very interesting to investigate if

the condition (11) remains consistent with the renormalization group flows in the IR limit.

That could clarify if the solutions calculated in this paper can play a role in the low energy

limit of the pure SU(2) Yang-Mills theory.
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